9 research outputs found

    Validation of the Parlay API through prototyping

    Get PDF
    The desire within the telecommunications world for new and faster business growth has been a major drive towards the development of open network API. Over the past 7 years several (semi) standardization groups have announced work on network API, including TINA-C, JAIN, IEEE P1520, INforum, 3GPP, JAIN, Parlay. The Parlay group seems most successful in attracting industry awareness with their API, called the Parlay API. The rational behind the Parlay API is that it attracts innovation from third parties that are outside the network operator's domain to build and deploy new network-hosted applications. This also means that the public telecommunication network is opened for niche and short-lived applications as well as for applications that possibly integrate telephones with other terminals such as PC. The Parlay group has successfully passed the first two phases of success, namely publishing their API on the right moment in time and attracting a critical mass within the telecommunication industry with their results. Prototyping the API on a real network execution platform is the only way to show its technical feasibility. Such an exercise was executed internally within Lucent Technologies and raised a number of questions as well as recommendations on both the technical and the semantical behavior for systems that will be interconnected via the Parlay API. We share these results, showing the drawbacks and advantages as well as challenges for this AP

    Tuning the dipole directed assembly of core-shell nickel coated gold nanorods

    Get PDF
    We present the dipole-directed assembly of nickel-coated gold nanorods into nanorings and nanowires. We used two different coating methods to synthesise these core-shell superstructures. Surprisingly, the two coating methods lead to very different kinds of dipole directed assembly. We show that the resultant dipole assembly is very sensitive to the reaction conditions and can be tuned to obtain core-shell nanochains, nanorings, and nanowires. In addition to the presented experimental work, cluster moving Monte Carlo simulations of a system of core-shell nanorods were carried out. These simulations are based on a small number of magnetic interaction energy terms and do not explicitly deal with steric interactions or van der Waals forces. The simulation results are in line with the obtained experimental results, confirming that the magnetic self-assembly of core-shell nanorods can be described by means of a relatively simple mode

    Transition voltage spectroscopy of scanning tunneling microscopy vacuum junctions

    Get PDF
    We have determined the dependence of the transition voltage (minimum in a ln(I/V2) vs. I/V plot) on the vacuum gap width in ultra-high vacuum scanning tunneling microscopy junctions. We have performed dual bias room temperature experiments with a W tip and Au(111) as well as polycrystalline Pt surfaces. For both type of surfaces the transition voltage decreases linearly with increasing inverse gap width. This is in marked contrast with the standard models for quantum mechanical tunneling, which predict a linear increase of the transition voltage with increasing inverse gap width. This remarkable discrepancy can only be partly explained by the incorporation of an image charge effect and therefore there is a clear need for a revision of the standard models for quantum mechanical tunneling in vacuum scanning tunneling microscopy junctions

    Validation of the Parlay API through prototyping

    No full text
    corecore